คุณจะได้รับประโยชน์จากการใช้การจำลองมอนติคาร์โลเพื่อการออกแบบผลิตภัณฑ์ใหม่อย่างไร?

สมมติว่าคุณทำการออกแบบผลิตภัณฑ์ใหม่ที่มีการปรับปรุงรูปแบบหลายอย่างเพื่อให้ตรงตามความต้องการของลูกค้ามากขึ้น ก่อนอื่นคุณจะต้องมีการทวนสอบก่อนว่าการผลิตนั้นได้คุณภาพที่ดีที่สุดและได้มาตรฐานที่น่าเชื่อถือหรือไม่ ซึ่งจะทำให้เป็นที่ไว้วางใจของลูกค้าในระยะยาว ซึ่งคุณจะต้องทำสิงเหล่านี้ด้วยความรวดเร็วและทำการส่งต่องานของการค้นคว้าและพัฒนาไปยังฝ่ายผลิต และเพื่อช่วยให้ฝ่ายผลิตให้ทำงานได้ดีขึ้น ฝ่ายพัฒนาจะเป็นผู้กำหนดข้อกำหนดเฉพาะ(Specifications) ของชิ้นส่วนประกอบต่างๆให้กับผู้ผลิตชิ้นส่วน (suppliers) และข้อกำหนดเฉพาะของชิ้นส่วนนี้จะถูกเปลี่ยนมาเป็น “process window” ในกระบวนการผลิตจริง

การทำ Optimization

เมื่อไหร่ก็ตามที่โรงงานผลิตตั้งอยู่ห่างออกไปอีกพื้นที่หนึ่งหรือแม้แต่อีกประเทศหนึ่ง หรือแม้แต่โรงงานผู้ผลิตชิ้นส่วนนั้นจะเป็นผู้ผลิตเดียวกันหรือมาจากผู้ผลิตนอกโรงงาน (external supplier) เพื่อให้การผลิตผลิตภัณฑ์เป็นไปอย่างราบรื่น ทีมผู้ออกแบบจะต้องกำหนดสูตรให้ถูกต้อง (ได้แก่ ข้อกำหนดเฉพาะที่ดีที่สุด การตั้งค่าการผลิตที่เหมาะสมที่สุด ฯลฯ) ถ้าในการกำหนดค่าการเผื่อ (Tolerancing) ทำไว้ได้ไม่เหมาะสม วิศวกรฝ่ายผลิตอาจจะต้องทำการแก้ปัญหาที่อาจไม่เข้ากันของชิ้นส่วน หรือ ปรับเปลี่ยนค่าการตั้งค่า (setting) ในระหว่างการผลิต และถ้าเกิดเหตุการณ์นี้อาจไม่ใช่ทางเลือกที่ดีนักเพราะอาจต้องมีการแก้ไขคุณลักษณะของผลิตภัณฑ์ หรืออาจส่งผลกระทบต่อการทำการตลาดในเรื่องกำหนดเวลา

การประมาณความสามารถ (Capability)

น่าเสียดายที่กระบวนการทุกๆขั้นตอนจะมีความแปรปรวนมาจากหลายที่ (ขึ้นกับสภาพแวดล้อมที่ไม่แน่นอน และ ความผันแปรของกระบวนการผลิต) และความผันแปรของกระบวนการผลิต มักจะเป็นสาเหตุหลักของปัญหาด้านคุณภาพ ถ้าข้อกำหนดเฉพาะของผลิตภัณฑ์มีช่วงกว้างพอเมื่อเทียบกับความผันแปรทั้งหมดของกระบวนการผลิต ผลที่จะได้คือ ผลิตภัณฑ์ที่มีคุณภาพดีที่ต้นทุนการผลิตต่ำ (มีค่า Ppk สูง) ถ้าไม่ใช่กรณีเช่นนี้ ค่าเปอร์เซ็นต์ของผลิตภัณฑ์ที่ไม่ตรงตามข้อกำหนดเฉพาะจะมีค่าเพิ่มจำนวนมาก

จากกราฟด้านล่าง จะเห็นได้ว่ามีตัวแปรตั้งต้น (inputs) จำนวนมาก และมีเพียง ผลลัพธ์ (output) เพียงค่าเดียว และตัวแปรตั้งต้นบางตัวเป็นตัวที่ควบคุมได้ (Controllable) แต่บางตัวถือเป็นปัจจัยรบกวน (noise factors)

Monte Carlo Simul

ในขั้นตอนนี้ อาจจะมีตัวต้นแบบเพียงไม่กี่ตัวที่ใช้งานได้และตรงตามแนวคิดที่ออกแบบไว้ อย่างไรก็ตาม ตัวแบบที่สร้างจากแนวคิดของการออกแบบการทดลอง (DOE, Design of Experiment) การออกแบบด้วยคอมพิวเตอร์ (Computer – Aided) หรือ การใช้ตัวแบบทางกายภาพ (Physical models) อาจจะทำให้คุณสามารถที่จะเข้าใจความผันแปรที่จะส่งผลต่อผลิตภัณฑ์สำเร็จรูปได้ง่ายขึ้น ซึ่งทำให้คุณสามารถทำนายค่าความสามารถ (Capability) ที่จะเกิดขึ้นเพื่อดูว่าการผลิตที่จะเกิดขึ้นจริงนั้นเป็นอย่างไร

การใช้วิธีจำลองตัวแบบ Monte Carlo

วิธีจำลองแบบด้วย Monte Carlo เป็นเทคนิคในการใช้ความน่าจะเป็นเพื่อสร้างตัวเลขของตัวแปรสุ่มจำนวนหนึ่ง เพื่อทำการหาค่าความผันแปรของระบบที่ซับซ้อน วัตถุประสงค์ในการจำลองตัวแบบและทดสอบตัวแบบเพื่อทำให้เราคาดการณ์ถึงปัญหาด้านคุณภาพที่จะเกิดขึ้น และทำการหลีกเลี่ยงต้นทุนการออกแบบที่ต้องเพิ่มขึ้นจากการเปลี่ยนแปลงภายหลัง ซึ่งทำให้การทำงานในโรงงานและสายการผลิตจริงนั้นมีความง่ายขึ้น


เป็นทีรู้กันว่างาน Monte Carlo เป็นงานยาก แต่โปรแกรมเป็นเครื่องมือที่จะทำให้มันทำงานได้ง่ายขึ้น ตัวอย่างเช่น โปรแกรม Minitab Engage ซึ่งโปรแกรมใช้เป็นเครื่องมือในการประมวลผลและรายงานผลโปรเจกต์ปรับปรุงคุณภาพทุกประเภท รวมถึงเครื่องมือจำลอง Monte Carlo ที่เหมาะสำหรับวิศวกรการผลิต

คุณลักษณะของตัวแปรตั้งต้นทุกตัวจะถูกใส่เป็นค่าเฉลี่ย และ ค่าความแปรปรวน รวมไปถึงกำหนดการแจกแจงความน่าจะเป็นให้ถูกต้องเพื่อทำให้รู้พฤติกรรมของตัวแปรตั้งต้นที่จะเป็นไป เพื่อให้งานนี้ง่ายขึ้นอาจใช้การแจกแจงแบบสามเหลี่ยม (Triangular Distribution) แทน โดยการหาค่าต่ำสุด ค่าสูงสุด และค่ากลาง (ค่าที่เป็นไปได้มากสุด)

การวิเคราะห์ Sensitivity

เมื่อทำการทดสอบตัวแบบ Monte Carlo ถ้าดัชนีความสามารถที่ทำนายออกมานั้นพบว่ามีค่าไม่เพียงพอ และจะต้องทำการปรับปรุงเพื่อให้ได้ระดับคุณภาพที่ยอมรับได้ อาจจะต้องทำการลดความผันแปรของตัวแปรตั้งต้นบางตัว แต่ในการลดความผันแปรเป็นงานที่ต้องใช้เวลาและเงินทุน ดังนั้น จึงควรเลือกที่จะทำการลดความผันแปรเฉพาะกับบางตัวที่ให้ผลกระทบขนาดใหญ่ในการปรับปรุงความสามารถ

Sensitivity Analysis

จากกราฟด้านบนนี้ แสดงให้เห็นว่าการวิเคราะห์ sensitivity ในการลดความเบี่ยงเบนมาตรฐานของตัวแปรเฉพาะตัวหนึ่ง (เส้นสีเขียว) ทำให้เราสามารถลดสัดส่วนงานที่ไม่ตรงตามข้อกำหนดเฉพาะได้จำนวนมาก

Robust Design

ในระบบอาจจะมีพารามิเตอร์ที่ควบคุมได้บางตัวมีอิทธิพลเกี่ยวเนื่องกับปัจจัยรบกวน หมายความว่าปัจจัยรบกวนตัวนั้นอาจทำการปรับแก้ได้จากการปรับปัจจัยที่ควบคุมได้ ถ้าในกรณีแบบนี้ อิทธิพล interactions ของปัจจัยดังกล่าวจะนำมาใช้เพื่อกำจัดค่าของปัจจัยรบกวนและทำการสร้างกระบวนการผลิต หรือ ผลิตภัณฑ์ที่ไม่ไวต่อการเปลี่ยนแปลงของความไม่คงที่ของสภาพแวดล้อม อิทธิพลที่ไม่เป็นเส้นตรงก็อาจเป็นอีกหนึ่งวิธีที่ใช้ในการปรับปรุงเพื่อให้ได้ในสิ่งที่ไม่ไวต่อการเปลี่ยนแปลงของความไม่คงที่ของสภาพแวดล้อม

Devize Compare

จากกราฟด้านบน หลังจากการทำ Optimization และตามด้วยการวิเคราะห์ sensitivity ทำการลดความผันแปรของตัวแปรตั้งต้นหนึ่งซึ่งทำให้ความผันแปรของผลลัพธ์สุดท้ายลดลงอย่างมาก ซึ่งก่อนหน้านี้มีของที่ออกนอกข้อกำหนดเฉพาะจำนวนมาก (รูปก่อนหน้าการลดความผันแปรคือด้านขวา) แต่หลังจากลดความผันแปรจะเห็นว่าเกือบทั้งหมดอยู่ในข้อกำหนดเฉพาะ

บทสรุป

วิธีการทำแบบจำลองเป็นกระบวนการทำซ้ำ ดังนี้

  1. ออกแบบค่า nominal
  2. จำลองเพื่อหาค่าความผันแปร และทำนายดัชนีความสามารถ
  3. วิเคราะห์ sensitivity
  4. ออกแบบซ้ำ หรือ ทำการปรับค่าแนวโน้มสู่ศูนย์กลาง จนกระทั่งระบบตรงตามความต้องการ

การจำลองแบบ Monte Carlo เป็นส่วนสำคัญของงาน DFSS (Design for Six Sigma) หรือ DMADV (Define Measure Analyze Design Verify) การคิดค้นนวัตกรรมมีบทบาทสำคัญเพื่อทำให้เกิดความประหยัดและเกิดความก้าวหน้ารวมไปถึงมีการเติบโตอย่างต่อเนื่อง ในการที่จะเข้าสู่สภาวะการคิดค้นนวัตกรรม แนวคิดการใช้การจำลองแบบถือเป็นสิ่งสำคัญยิ่ง

การจำลองแบบ Monte Carlo ในอดีตอาจจะมีค่าใช้ต้นทุนเพื่อการคำนวณที่สูง ซึ่งไม่ได้มีผลใดใดในปัจจุบันนี้เพราะมีเครื่องมือมากมายที่สามารถใช้ในการคำนวณตัวเลขจำนวนมหาศาลได้อย่างง่ายดาย


บทความต้นฉบับ : How Could You Benefit from Monte Carlo Simulation to Design New Products ?

ต้นฉบับนำมาจาก Minitab blog, แปลและเรียบเรียงโดยสุวดี นำพาเจริญ,

บริหารจัดการ SCM Blog โดยชลทิชา จำรัสพร บริษัท โซลูชั่น เซ็นเตอร์ จํากัด ตัวแทน Minitab ในประเทศไทย

Minitabbloglogo

เพิ่มเติมเกี่ยวกับบริษัท Minitab

Minitab ช่วยให้บริษัทและองค์กรต่างๆ สามารถมองเห็นแนวโน้มของข้อมูล, แก้ปัญหาและค้นพบประเด็นสำคัญจากข้อมูลเชิงลึก โดยนำเสนอชุดโซลูชั่นที่ครอบคลุมทุกด้านและดีที่สุดสำหรับซอฟต์แวร์ในระดับเดียวกัน ที่ใช้สำหรับการวิเคราะห์ข้อมูลและการปรับปรุงกระบวนการ 
ด้วยวิธีการที่เป็นเอกลักษณ์ และการนำเสนอซอฟต์แวร์และบริการแบบองค์รวม Minitab ช่วยให้องค์กรเข้าถึงกระบวนการตัดสินใจในส่วนที่ช่วยผลักดันให้เกิดความเป็นเลิศทางธุรกิจได้ดีขึ้น ความง่ายในการใช้งานที่โดดเด่นกว่าใครมีส่วนช่วยให้ Minitab สามารถทำให้การเข้าถึงข้อมูลเชิงลึกเป็นเรื่องที่ง่าย ทีมงานของ Minitab ซึ่งประกอบด้วยผู้เชี่ยวชาญทางด้านการวิเคราะห์ข้อมูลที่ได้ผ่านการอบรมมาเป็นอย่างเข้มงวด จะช่วยให้ผู้ใช้งานมั่นใจว่าจะได้รับประโยชน์สูงสุดจากการใช้งานวิเคราะห์ข้อมูลและพร้อมที่จะให้คำปรึกษาตลอดเวลาที่ใช้งานเพื่อนำไปสู่การตัดสินใจที่ดีขึ้น รวดเร็ว และแม่นยำ 
เป็นเวลากว่า 50 ปีที่ Minitab ได้ช่วยองค์การต่าง ๆ เพิ่มรายได้ ควบคุมและลดต้นทุน เพิ่มคุณภาพ เสริมสร้างความพึงพอใจของลูกค้า และเพิ่มประสิทธิภาพ ธุรกิจและองค์นับหมื่นทั่วโลกใช้ Minitab Statistical Software®, Companion by Minitab®, Minitab Workspace®, Salford Predictive Modeler® and Quality Trainer® เป็นเครื่องมือช่วยในการค้นพบและปรับปรุงความบกพร่องในกระบวนการ